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I. INTRODUCTION

The design of buckling critical shell structures is complicated by the

presence of geometric imperfections inherent in any manufacturing process.

These small deviations from the perfect geometry are largely responsible for

the sizeable discrepancy between analysis and test results for many shell

buckling problems. The usual method of incorporating these initial imper-

fections into the design process is to use an empirically determined "knock-

down" or correlation factor (ref. i). Recently developed geometrically non-

linear structural analysis computer codes (for example, ref. 2) have made it

possible to calculate the effect on buckling of an assumed imperfection.

However, the economical use of such tools requires considerable knowledge on

the part of the user as to the physical behavior of the imperfect shell

structure. This knowledge can be gained using a hierarchy of imperfection

sensitivity analyses developed over recent years.

This report describes in detail a study on one well characterized stringer

stiffened cylindrical shell. The initial imperfections and prebuckling growth

under axial load were measured as well as the axial buckling load. The results

of various analyses for imperfect shells are presented and compared to each

other and to test results. Finally, a procedure to calculate a "knockdown

factor" is proposed. This procedure, based upon a known or expected design

imperfection makes optimal use of state-of-the-art analysis capability.

The work reported in this paper was carried out at the California Insti-

tute of Technology under Research Grant NSG-IO05 from the National Aeronautics

and Space Administration. Some of the computations were carried out at the

Delft University of Technology Computing Center after the first author's move

to the Netherlands. The support of both of these institutions is gratefully

acknowledged.

The authors also wish to express their appreciation to Dr. Kiam Oey, the

GALCIT staff and Mr. Kees Venselaar for their assistance in carrying out this

work and in the preparation of this report.
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LIST OF SYMBOLS

cross-sectional area of stringer

imperfection sensitivity factor

stringer spacing

distance between centroid of stringer cross-section and middle

surface of skin

Young's modulus

moment of inertia of stringer cross-section about its centroidal

axis

torsional modulus of the stringer cross-section

number of half waves in the axial direction

number of full waves in the circumferential direction

shell length

axial stress resultant

imperfection model parameters

shell radius

shell thickness

axial, circumferential and radial displacement components

imperfection in radial direction

_w

_x

imperfection model parameters

axial and circumferential coordinates of the shell

imperfection in lowest buckling mode

calculated buckling load divided by experimental buckling load

circumferential coordinate, 0 = y/R

Poisson's ratio

initial imperfection amplitudes

nondimensional loading parameter

initial imperfection circumferential phase shift

Subscripts

cal calculated

exp experimental



II. CHARACTERIZATIONOFTHETESTSHELL

The cylindrical shell studied in this report is the aluminum test shell

designated as AS-2 in ref. 3. The shell is axially stiffened with integral

rectangular stiffeners. The shell properties are given in Table I. The shell
was buckled under axial compression and its initial imperfection and prebuck-

ling growth were measured. The measurementdevice and testing machine are
shown in fig. i, with a shell similar to the one under study in the testing

machine. The stiffener geometry and the test configuration are described in

fig. 2. The shell buckled at an axial load of 226.3 N/cm.
Before the shell was buckled the shell's initial imperfection was

measuredand is shownin fig. 3. This figure shows the best fit initial imper-

fection (ref. 4). The imperfection has been normalized by the shell thickness
and is rolled out to show the circumferential and axial distribution. During

the loading process the shell surface shape is remeasured and the initial

imperfection is subtracted from that measurement. This gives the prebuckling

deformation. A typical result at a load close to the buckling load is shown

in fig. 4. The characteristic wave form has nine circumferential waves and
one axial half wave.

The perfect shell was analyzed using shell of revolution computer codes

SRA(ref. 5) and BOSOR(ref. 6). The shell loading device and actual shell
was modeled in order to determine the influence of the experimental boundary

conditions. The prebuckling deformation (axisymmetric) is shownin fig. 5.
It is seen that the load cell does not appear to present a fully clamped boun-

dary condition. The buckling modefor this case is also shownin fig. 5. The
value calculated for the critical load with the experimental boundary condi-

tions is 316.6 N/cm (180.8 ib/in.). However, this value is approximately 0.1%

lower than that obtained using the fully clamped conditions (ref. 7). There-
fore it seemsreasonable to assumethe fully clamped conditions in further

analyses.
The analysis described above considers the influence of the prebuckling

deformation due to the end constraints. A simplified version of the problem

considers only a membraneprebuckling stress and gives the following results

N = 320.8 N/cm (183.2 ib/in).
X



This is only slightly above the buckling load including the edge effect.

The membrane stress state will be assumed in further calculations for the per-

fect shell. The various buckling loads are summarized below.

Conditions

Analysis

Experimental Set-up

Fully Clamped-Nonlinear

Bending Prebuckling

Fully Clamped-Membrane

Prebuckling

Load

N/cm Ib/in.

316.6 180.8

316.8 180.9

320.8 183.2

Experiment 226.3 129.2

In studying the behavior of the imperfect shell it is necessary to deter-

mine the buckling modes of the perfect shell corresponding to the lowest few

buckling loads. An eigenvalue map of modes calculated using membrane pre-

buckling and fully clamped boundary conditions is shown in fig. 6. The figure

identifies by circumferential wave number and order of eigenvalue those modes

that have buckling loads close to the lowest one. There are approximately 14

modes that correspond to loads less than 10% above the lowest eigenvalue.

From previous work it is known that the imperfections in these modes are the

ones which most influence the imperfect shell behavior. The values of the

buckling loads are given in Table 2 for a few of the lowest loads. These

results were obtained using the BOSOR computer code and are slightly higher

than similar results using the SRA computer code. The mode shapes of the first

four modes with 14 circumferential waves are shown in fig. 7. As can be seen

a simple counting of nodes is not sufficient to identify a mode as can be done

for simply supported boundary conditions.

The next item that must be examined is the character of the initial

imperfection. Expanding the imperfection in a double Fourier expansion has

been a useful tool in previous studies (ref. 7). The expansion used depends

upon the application but in the subsequent analysis it will be useful to have

the axisymmetric imperfection as a cosine expansion and the asymmetric imper-

fection as a sine expansion



N M Ni_x
w(x,y)/t = E $i0 cos T + _ E

i=0 k,£=l
_k£ sin --L- cos ( + _k£).

The coefficients _k£ are shownin fig. 8 for the first few harmonics. If
these coefficients are displayed on a log-log basis (ref. 8) a reasonable

approximation to straight lines is observed (neglecting the _ = 1 mode).
This allows the fitting (by a least square technique) of the following imper-

fection model (ref. 7).

XA
_iO - i q ' _k£ - kr£s

This imperfection model will be used in subsequent analyses rather than the

measuredamplitudes. The imperfection model parameters were obtained in two
different manners. First a group of three similar shells (including AS-2)

were fit by a commonimperfection model (ref. 7). Next, the imperfection of
shell AS-2 alone was fit. The results are given below

Grou_ of 3 Shells AS-2

XA .0072 --
1.1973 1.1016

q .027 --
r 1.123 1.103

s 1.227 1.359

The results show that both methods give similar coefficients for the imperfec-

tion model.
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III. ANALYSISOFTHEIMPERFECTSHELL

The buckling analysis of an imperfect shell can be carried out in a

variety of ways with varying degrees of complexity. The purpose of this sec-

tion is to determine the success of these types of analyses in predicting the

buckling load of the test shell described in section II. An additional pur-
pose is to discover what each analysis has to contribute to the next level of

analysis complexity.

The simplest type of imperfection sensitivity analysis is that introduced
by Koiter (ref. 9) and further developed by Budiansky and Hutchinson (refs. l0

and ii). In this analysis the sensitivity of the buckling load to the imper-

fection having the shape of the buckling modeis studied. This analysis was
specialized to stiffened cylindrical shells by Hutchinson and Amazigo (ref. 12)

for the case of classical simple support boundary conditions. These results
are expressed as

(i- 0)3/2 =--3 #-3b P I_I2

where I_l is the imperfection in the lowest buckling mode, b is the imper-

fection sensitivity factor, and O is the ratio of imperfect shell buckling

load to the perfect shell buckling load. For the shell being studied, i0 full

circumferential waves and one axial half wave for simple support boundary
conditions, corresponds to I_l = 0.054, b = -0.0308. Using the above

parameters the imperfect shell buckling load can be calculated to be

p = 0.92

This load is considerably higher than the experimental load (0 = 0.71).

It therefore appears necessary to include additional terms in the imperfection
when calculating the imperfect shell buckling load.

The next level of complexity in the analysis is to consider additional

modesof imperfections. This will be referred to as the Multimode Analysis

(refs. 7, 13, and 14). The nonlinear shell equations are solved by expanding

the imperfection and radial displacement in a Fourier series and then solving



the compatibility equation. A Galerkin procedure is then used to reduce the

problem to a set of nonlinear algebraic equations that are solved numerically.

The expansion for the displacement is the sameas previously introduced for

the initial imperfection.

The main problem in using the Multimode Analysis is the proper selection
of the deflection modes. The imperfection in these modesmust be of a signi-

ficant magnitude and these modesmust also correspond to buckling loads close
to the lowest load. It has also been found that special attention must be

given to the satisfaction of the axial and circumferential coupling conditions.

It has been shown (ref. 15) that for the degenerate case of one axisymmetric

(i,0) and one asymmetric mode (k,_) there is a single coupling relation
i = 2k. Furthermore, it has been found that coupling between three asymmetric

modeswith wave-numbers (kl,_l), (k2,_2) and (k3,_ 3) will occur if the rela-

tions kI + k2 + k3 = an odd integer and _3 = I_i _ _2I hold. This implies
that if the coupling conditions are satisfied, then the resulting buckling load
of the shell will be lower than the buckling load which is predicted with each

modeconsidered separately.

It is also important to choose modesthat have low buckling loads. The

eigenvalue map, as introduced earlier for the fully clamped boundary condi-

tions, helps in the proper selection. For simply support boundary conditions

the results are shownin fig. 9. There are only three buckling loads within
10%of the lowest one.

The simplest multimode selection uses the (i,i0) modefrom the eigenvalue

mapand the coupled mode (2,0). This results in a buckling load of

p = 0.904

This is slightly lower than that obtained from the Koiter type analysis. To
include the other important modeshaving low buckling loads, coupling modes

must be added to provide the interaction (ref. 13). The resultant 7-mode

solution produces a buckling load of

p = 0.825



The inclusion of 7 more modesdoes not produce a significantly lower buckling
load (see Table 3).

The next level of complexity in analysis is to use a two dimensional non-

linear shell analysis such as STAGS(ref. 2). With the use of this type of
numerical tool, one can, in principle, determine the buckling load of a com-

plete shell structure including the effect of an arbitrary prescribed initial

imperfection. In practice, the cost of performing such an analysis dictates

that the problem size be cut downusually by modeling only a portion of the

shell structure. This approach will be used for this analysis. The shell
model used a 180° segmentwith symmetry conditions imposed at 0° and 180° as

well as at the shell mid-length. The meshused was 21 by 131 points in the
axial and circumferential directions respectively. This meshwas chosen based

upon a convergence study (ref. 16).

The first STAGSimperfection analysis uses a 7-modeimperfection model

which is the sameas the Multimode Analysis 7-modecase (Table 3). The imper-
fection is

2_x. _xw/t = 0.0061 cos (-_--) - sin _- {0.5072 cos (2 )

+ 0.0801 cos (9 RX) + 0.0704 cos (10 _R)+ 0.0626 cos (ii RX)

+ 0.0320 cos (19 _) + 0.0283 cos (21 _)}

The sign of the asymmetric componentof the imperfection has been taken as
negative so that the imperfection is inwardly directed at O = 0° (ref. 16).

The results of the STAGSanalysis and the corresponding Multimode Analysis

are shown in figures i0, ii and 12. Figure i0 shows the maximumdisplacement
as a function of the axial load. Here the maximumdisplacement is the radial
displacement w at x = L/2 and e = 0°. The results of the nonlinear STAGS

runs are indicated by circles. Above the last point the determinant of the

stiffness matrix changes sign indicating the occurrence of an instability.

The axial load corresponding to the last converged solution is the collapse

load P = 0.829. The load parameter P has been nondimensionalized by
320.8 N/cm, which is the buckling load for the perfect shell AS-2 using



membraneprebuckling and C-4 (u = v = w, x = w,x O) boundary conditions. The
results of the corresponding Multimode Analysis are given by the solid curve.

Its limit point occurs at p = 0.825, which agrees just about exactly with the

value obtained by STAGS. Further, as can be seen from figures ii and 12, the

shapes of the radial displacements at the center of the shell (at x = L/2)

plotted as a function of the circumferential angle 0 are very similar for the

two methods. Their amplitudes are, however, different by about a factor of 2.

This difference is thought to occur due to the difference in the boundary

conditions used in the two analyses. The boundary conditions used with the

STAGSanalysis were fully clampedwhile those of the Multimode Analysis more
closely approximate simply supported. Despite this difference in displacement,

the closeness of the buckling loads tends to confirm the practice of using the

simpler Multimode Analysis as a first guess for the imperfect shell buckling
load (ref. 7).

The analysis just described provides an interesting comparison between the

Multimode Analysis and STAGS. However, the results predicted by STAGS

(O = 0.829) is still considerably higher than the experimental results

P = 226.3/316.6 = 0.714.

It is apparently necessary to include more information about the initial imper-

fection in the STAGSanalysis.
Based upon the eigenvalue map (fig. 6) it was decided to include asymmetric

modeswith up to four half waves in the axial direction. Symmetrycan no

longer be used at the shell mid-length since now both symmetric and anti-
symmetric modesare involved in the response. This necessitates more mesh

points along the length. In order to keep the numerical problem manageable,
the circumferential segment of the shell model was reduced to 90° . With

symmetry conditions imposed at 0 = 0° and e = 90° the shell cannot respond
to odd numberedcircumferential harmonics and these harmonics are eliminated

from the imperfection. Even numberedharmonics up to _ = 18 are included.

The imperfection for this case is given below:



w/t =

8

Z

i=2
_i0 cos ---

iITx

L

4 18

Z Z

k=1%=12

k_x %__
_k% sin -_- cos R

2 i0

Z Z

k=1%=2

k_x __X
_k_ sin-_-cos R , even terms in i,% sums.

The _ coefficients are given in Table 4. The imperfection described by this

30-mode model is shown in fig. 13. From this figure it can be seen that the

elimination of the phase angle (_k_) from the cosine circumferential harmonics

biases the imperfection at 0 = 0°, 180 ° .

The analysis was carried out using a 40 by 40 mesh. The results for the

maximum radial displacement (at x/L = 0.28, @ = 0°) are shown in fig. 14.

Each point indicated by a circle represents a STAGS converged solution. Above

O = 0.759 the displacement is increasing very rapidly with load and additional

solutions have not been obtained. A good estimate of the collapse load is

O = 0.760. The load parameter O has been nondimensionalized by 320.8 N/cm,

which is the buckling load for the perfect shell AS-2 using membrane prebuckling

and C-4 boundary conditions.

The displacements of the last converged solution are shown in figures 15

and 16. The bias at 0 = 0° is clear in fig. 15 although a 0 = i0 ° harmonic

appears to be emerging. The axial variation (fig. 16) shows both a k = 1

and k = 2 dependence.

The collapse load as calculated by STAGS is estimated to be

N = .760 x 320.8 = 243.8 N/cm (139.2 ib/in_.
Xca I

The experimental buckling load (ref. 3) is

N
X

exp

= 226.3 N/cm (129.2 ib/inO.

The ratio (D) of these two loads is

q = N /N = i.08

Xca I xexp

I0



The analyses just described vary greatly in difficulty of execution. The

Koiter type asymptotic analysis is the simplest to use but does not adequately

predict the influence of the complex imperfection pattern characteristic of

shell structures. The Multimode Analysis developed for the cylindrical shells

does a fair job of prediction, but the extension of this type of analysis to

more general geometry and boundary conditions does not seem warranted in light

of presently available shell computer codes. The usefulness of this analysis

is that the modal coupling is explicitly displayed and that the importance of

imperfection modes can be examined (for the cylindrical geometry) without

difficulty. The STAGS analysis can give results for a knockdown factor that

are within the accuracy expected for imperfection sensitive buckling problems.

However, before this type of tool is used, it is prudent to understand the

buckling behavior of the perfect shell structure. A procedure to use STAGS

(or similar analysis) in the selection of a knockdown factor (0) will be out-

lined in the next section.
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IV. PROPOSEDANALYSISPROCEDURE

The previous sections have described the analysis and correlation studies

carried out for a particular stiffened shell under axial compressive loading.

The study of this idealized problem was undertaken with the objective of

establishing a rational analysis procedure for the incorporation of geometric
imperfections into the design of buckling critical shell structures. The pro-
posed procedure will be outlined as applied to a shell of revolution under
axially symmetric loads.

There are three necessary ingredients to the proposed procedure. These
are listed below and briefly discussed.

Ca) Buckling analysis capability for a shell of revolution under axially
symmetric loads. A computer code such as BOSOR(ref. 6) or SRA(ref. 7)
will satisfy this requirement.

_b) A geometrically nonlinear shell analysis for a shell of revolution

with an asymmetric initial imperfection. The STAGS(ref. 2) computer
code will satisfy this requirement.

_c) A design imperfection. At the present time this is the most elusive
ingredient. The imperfection model introduced in section II is one

approach but has yet to be extended to larger cylindrical shell structures
or other shells of revolution.

Using these tools the following steps are to be carried out:

_i) Find the buckling load of the perfect shell structure using the

analysis (a). Establish the importance of the type of prebuckling defor-

mation used in the analysis. Determine which part of the complete shell
structure is likely to buckle and the appropriate end conditions when

modeling only the critical subsection of the complete shell structure.

(2) Using the appropriate subsection of the complete shell and the

simplifications justified in Step i), calculate all buckling loads using
analysis (a), within 50%of the lowest buckling load. The associated

buckling modeswill typically have circumferential wave numbersother than

that corresponding to the lowest buckling load.

_3) Using analysis (b) and imperfections corresponding to all modescalcu-

lated in 2), find the buckling load of the shell subsection. This step

requires the use of the design imperfection (c) which should represent the

12



manufacturing procedure (and tolerances) to be used when producing the
shell structure.

The procedure outlined above is intended to replace the usual empirical
knockdownfactor. It is anticipated that the conventional approach and the

proposed procedure would both be used until adequate experience has been

developed by subsequent testing of shell structures designed using this

approach. It is not expected that this procedure would replace engineering

judgment, only that this judgment would be guided by the rational use of the

nonlinear shell analysis capability presently available.

13
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Table i.- Geometric and material properties of shell AS-2.

t = 1.96 × 10 -2 cm

L = 13.97
cm

R = 10.16 cm

d I = 8.034 × i0 -I cm

e I = 3.368 x 10 -2 cm

A 1 = 7.987 × 10 -3 cm 2

Ill = 1.504 x 10 -6 cm 4

Itl = 4.945 × 10 -6 cm 4

E = 6.895 x 106 N/cm 2

v =0.3

R/t = 517
L/R = 1.375

(0. 00774
in,)

(s.so
in.)

(4.00
in.)

(0.3163
in)

(0.01326
in.)

(0.1238 x 10 -2 in 2)

(0.3613 × 10 -7 in.4)

(o.1188 × lO-6 in4)

(10 × 10 6
psi)

16
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Table 3.- Buckling loads calculated by the Multimode Analysis.

No. of modes O

2-modes

(2,0) + (i,i0)

4-modes

(2,0) + (i,i0) + (9,10) + (i0,0)

7-modes

(2,0) + (1,2) + (1,9) + (i,I0) + (i,Ii) + (i,19) + (1,21)

14-modes

(2,0) + (1,2) + (1,9) + (i,i0) + (1,11) + (1,19)

+ (1,21) + (9,2) + (9,9) + (9,10) + (9,11)

+ (9,19) + (9,21) + (i0,0)

0.904

0. 903

0.825

0.824

18



Table 4.- The 30-modeimperfection model.

Mode k,i
no.

1 2

2 4

3 6

4 8

5 1

6 1

7 1

8 1

9 2

i0 2

ii 2

12 2

13 3

14 3

15 3

0

0

0

0

12

14

16

18

12

14

16

18

12

14

16

_k%

0.00461

0.00363

-0.00032

-0.00200

-0.03761

-0.03050

-0.02544

-0.02168

-0.01751

-0.01420

-0.01185

-0.01009

-0.01120

-0.00908

-0.00758

Mode k,i

no.

16 3

17 4

18 4

19 4

20 4

21 1

22 1

23 1

24 1

25 1

26 2

27 2

28 2

29 2

30 2

18

12

14

16

18

2

4

6

8

i0

2

4

6

8

i0

_k_

-0.00645

-0.00816

-0.00661

-0.00552

-0.00470

-0.42945

-0.16741

-0.09649

-0.06526

-0.04819

-0.19998

-0.07796

-0.04493

-0.03039

-0.02244
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Fig.1 Testing machine with stringer-stiffened shell.
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Fig.2 Stiffened shell geometry and test configuration.
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Fig.10 Comparison of Multimode Analysis and STAGS

(Shell AS -2,7-Mode Imperfection Model).

Fig.11 Radio[ displacement at the limit point by STAGS

(Shell AS-2,7-Mode Imperfection Model).
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